Abstract: | We consider the properties of the trimmed mean, as regards minimax-variance L-estimation of a location parameter in a Kolmogorov neighbourhood K() of the normal distribution: We first review some results on the search for an L-minimax estimator in this neighbourhood, i.e. a linear combination of order statistics whose maximum variance in Kt() is a minimum in the class of L-estimators. The natural candidate – the L-estimate which is efficient for that member of Kt,() with minimum Fisher information – is known not to be a saddlepoint solution to the minimax problem. We show here that it is not a solution at all. We do this by showing that a smaller maximum variance is attained by an appropriately trimmed mean. We argue that this trimmed mean, as well as being computationally simple – much simpler than the efficient L-estimate referred to above, and simpler than the minimax M- and R-estimators – is at least “nearly” minimax. |