首页 | 本学科首页   官方微博 | 高级检索  
     

SGL-SVM方法研究及其在财务困境预测中的应用
作者姓名:方匡南 杨 阳
摘    要:针对分类问题,本文提出了稀疏组Lasso支持向量机方法(Sparse group lasso SVM, SGL-SVM),即在SVM模型的损失函数中引入SGL惩罚函数,能同时进行组间变量和组内变量的筛选。由于SGL-SVM的目标函数求解比较复杂,本文又提出了一种快速的双层坐标下降算法。通过模拟实验,发现SGL-SVM方法在预测效果和变量选择上均要好于其他方法,对于变量具有自然分组结构且组内是稀疏的数据,本文方法在提高变量选择效果的同时又能提高模型的预测精度。最后,将本文提出的SGL-SVM方法应用到我国制造业上市公司财务困境预测中。

关 键 词:SVM  双层变量选择  SGL  财务困境预测  
点击此处可从《统计研究》浏览原始摘要信息
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号