首页 | 本学科首页   官方微博 | 高级检索  
     

基于量子门神经网络的手写体数字识别
引用本文:马宁,廖慧惠. 基于量子门神经网络的手写体数字识别[J]. 吉林工程技术师范学院学报, 2012, 28(4): 71-73
作者姓名:马宁  廖慧惠
作者单位:1. 安徽广播电视大学理工农医部,安徽合肥,230022
2. 安徽工业经济职业技术学院教务处,安徽合肥,230051
基金项目:安徽省高校优秀青年人才项目(2012SQRL230)
摘    要:手写体数字识别作为模式识别研究热点之一已得到广泛应用,诸多应用对手写体数字的识别率要求也越来越高,同时对批量数据处理的速度也提出了更高的要求.本文针对改善手写体数字的识别正确率和批量数据处理速度,将基于量子门组的神经网络方法引入到手写体数字识别中,通过选取字符的粗网格特征作为识别特征进行仿真实验.实验结果表明,该方法能够有效提高手写体数字的正确识别率.

关 键 词:神经网络  量子门  手写体识别

Handwritten Digital Recognition Based on Quantum Gate Neural Network
MA Ning , LIAO Hui-hui. Handwritten Digital Recognition Based on Quantum Gate Neural Network[J]. Journal of Jilin Teachers Institute of Engineering and Technology(Natural Sciences Edition), 2012, 28(4): 71-73
Authors:MA Ning    LIAO Hui-hui
Affiliation:1.Engineering,agriculture and the Department of Medical,Anhui Radio and Television University,Hefei Anhui 230022,China; 2.Teaching Affairs office,Anhui Technical College of Industry and Economy,Hefei Anhui 230051,China)
Abstract:Handwritten digital recognition,as one of the research hot spot in pattern recognition has been widely used;the requirements of many applications towards handwritten numeral recognition are also getting higher and higher,and at the same they raise higher requirement for the speed of mass data processing.This paper,aiming at improving the correct rate of handwritten digital recognition and mass data processing speed,introduces the neural network method based on quantum gate into the handwritten digital recognition,and makes simulation experiment through selecting the rough grid feature of character as recognition feature.The experimental result shows that this method can effectively improve the recognition rate of handwritten digits.
Keywords:neural network  quantum gate  handwritten recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号