首页 | 本学科首页   官方微博 | 高级检索  
     


Non-parametric Bayesian Inference for Integrals with respect to an Unknown Finite Measure
Authors:TORKEL ERHARDSSON
Affiliation:Department of Mathematics, Linköping University
Abstract:Abstract.  We consider the problem of estimating a collection of integrals with respect to an unknown finite measure μ from noisy observations of some of the integrals. A new method to carry out Bayesian inference for the integrals is proposed. We use a Dirichlet or Gamma process as a prior for μ , and construct an approximation to the posterior distribution of the integrals using the sampling importance resampling algorithm and samples from a new multidimensional version of a Markov chain by Feigin and Tweedie. We prove that the Markov chain is positive Harris recurrent, and that the approximating distribution converges weakly to the posterior as the sample size increases, under a mild integrability condition. Applications to polymer chemistry and mathematical finance are given.
Keywords:Bayesian inference    Dirichlet process    finite measure    Harris recurrence    integral    inverse problem    Markov chain    sampling importance resampling algorithm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号