首页 | 本学科首页   官方微博 | 高级检索  
     


Exponential inequalities for unbounded functions of geometrically ergodic Markov chains: applications to quantitative error bounds for regenerative Metropolis algorithms
Authors:Olivier Wintenberger
Affiliation:1. LSTA, Sorbonne Universités, Paris, France;2. Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmarkolivier.wintenberger@upmc.fr
Abstract:ABSTRACT

The aim of this note is to investigate the concentration properties of unbounded functions of geometrically ergodic Markov chains. We derive concentration properties of centred functions with respect to the square of Lyapunov's function in the drift condition satisfied by the Markov chain. We apply the new exponential inequalities to derive confidence intervals for Markov Chain Monte Carlo algorithms. Quantitative error bounds are provided for the regenerative Metropolis algorithm of [Brockwell and Kadane Identification of regeneration times in MCMC simulation, with application to adaptive schemes. J Comput Graphical Stat. 2005;14(2)].
Keywords:Markov chains  exponential inequalities  Metropolis algorithm  confidence interval
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号