首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian spatial quantile regression for areal count data,with application on substitute care placements in Texas
Authors:Clay King
Affiliation:Department of Computer Science, Mathematics, and Statistics, Colorado Mesa University, Grand Junction, CO, USA
Abstract:Quantile regression (QR) allows one to model the effect of covariates across the entire response distribution, rather than only at the mean, but QR methods have been almost exclusively applied to continuous response variables and without considering spatial effects. Of the few studies that have performed QR on count data, none have included random spatial effects, which is an integral facet of the Bayesian spatial QR model for areal counts that we propose. Additionally, we introduce a simplifying alternative to the response variable transformation currently employed in the QR for counts literature. The efficacy of the proposed model is demonstrated via simulation study and on a real data application from the Texas Department of Family and Protective Services (TDFPS). Our model outperforms a comparable non-spatial model in both instances, as evidenced by the deviance information criterion (DIC) and coverage probabilities. With the TDFPS data, we identify one of four covariates, along with the intercept, as having a nonconstant effect across the response distribution.
Keywords:Quantile regression  spatial methods  Bayesian methods  count data  foster care
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号