首页 | 本学科首页   官方微博 | 高级检索  
     

工业取用水监测奇异数据挖掘与重构方法
引用本文:张峰等. 工业取用水监测奇异数据挖掘与重构方法[J]. 统计研究, 2019, 36(9): 68. DOI: 10.19343/j.cnki.11-1302/c.2019.09.006
作者姓名:张峰等
摘    要:
提高工业取用水监测数据质量是目前国家水资源监控能力建设的重要内容,而奇异值问题已成为影响监测数据质量的关键短板。本文在解析现阶段工业取用水监测数据奇异值主要类型基础上,以国家水资源管理系统数据库中工业取用水监测数据为样本,利用小波变换模极大值模型提取工业取用水监测数据时频变化特征,并利用傅里叶函数对其残差序列进行修正,进而运用相对误差控制方法挖掘监测数据奇异值。在此基础上,采用混沌粒子群优化的最小二乘支持向量机模型重构填补奇异值数据。研究结果表明:小波变换模极大值模型能够较好地提取工业取用水监测数据序列的时频变化特征,但是同时容易导致监测数据的信息损失,利用傅里叶函数对小波变换进行残差修正则可进一步提升取用水监测数据序列的特征提取效果;以小波变换模极大值特征序列为基础,通过相对误差控制可实现对监测数据奇异值的高效挖掘;对于挖掘出的奇异值重构填补问题,可选取混沌粒子群优化的最小二乘支持向量机模型,其重构精度要优于多项式曲线拟合等传统统计学方法和普通最小二乘支持向量机模型。上述工业取用水监测数据奇异值挖掘重构策略为现阶段国家水资源监控能力建设的推进提供了重要技术方法支持。

关 键 词:工业取用水  数据挖掘  小波变换模极大值  数据重构  

Singular Value Mining and Reconstruction Methods of Industrial Water Monitoring Data
Zhang Feng et al.. Singular Value Mining and Reconstruction Methods of Industrial Water Monitoring Data[J]. Statistical Research, 2019, 36(9): 68. DOI: 10.19343/j.cnki.11-1302/c.2019.09.006
Authors:Zhang Feng et al.
Abstract:
Improving the quality of industrial water monitoring data is an important part of the national water resources monitoring capacity building, and the singular value problem has become a key shortcoming affecting the quality of monitoring data. Based on the analysis of the main types of singular values of industrial water use monitoring data, the industrial water use monitoring data from the national water resources management system database is selected as the study sample, and the time frequency variation characteristic of industrial water monitoring data is extracted by wavelet transform modulus maxima model and its residual sequence is fixed by Fourier function. Thus the singular value of the monitoring data is mined using the relative error control method. Moreover, the least squares support vector machine model with chaotic particle swarm optimization is used to reconstruct the singular value data. Results show that the wavelet transform modulus maxima model can better extract the time frequency variation characteristics of the industrial water use monitoring data sequence, but at the same time it is easy to cause the information loss of the monitoring data. However, the method of residual correction using wavelet transform by using the Fourier function can further improve the characteristic extraction effect of the water monitoring data sequence, and the relative error control can realize the efficient mining of the singular value of the monitoring data based on the wavelet transform modulus maximum characteristic sequence. For the singular value reconstruction and filling, the least squares support vector machine model of chaotic particle swarm optimization has better applicability, and its reconstruction accuracy is better than traditional statistical methods such as polynomial curve fitting and ordinary least squares support vector machine model. The singular value mining and reconstruction strategy of the above-mentioned industrial water use monitoring data provides important technical and methodological support for the advancement of national water resources monitoring capacity building.
Keywords:Industrial Water  Data Mining  Wavelet Transform Modulus Maxima  Data Reconstruction  
点击此处可从《统计研究》浏览原始摘要信息
点击此处可从《统计研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号