Construction of Confidence Intervals for the IVIean of a Population Containing Many Zero Values |
| |
Authors: | Alan H. Kvanli Yaung Kaung Shen Lih Yuan Deng |
| |
Affiliation: | 1. College of Business Administration, University of North Texas , Denton , TX , 76203 E-mail: kvanli@cobaf.unt.edu;2. Biometric Department , Smith Kline Beecham Pharmaceuticals , Collegeville , PA , 19426 E-mail: yaung-kaung_shen@sbphrd.com;3. Department of Mathematical Sciences , University of Memphis , Memphis , TN , 38152 E-mail: dengl@mscs.msci.memphis.edu |
| |
Abstract: | The likelihood ratio method is used to construct a confidence interval for a population mean when sampling from a population with certain characteristics found in many applications, such as auditing. Specifically, a sample taken from this type of population usually consists of a very large number of zero values, plus a small number of nonzero values that follow some continuous distribution. In this situation, the traditional confidence interval constructed for the population mean is known to be unreliable. This article derives confidence intervals based on the likelihood-ratio-test approach by assuming (1) a normal distribution (normal algorithm) and (2) an exponential distribution (exponential algorithm). Because the error population distribution is usually unknown, it is important to study the robustness of the proposed procedures. We perform an extensive simulation study to compare the percentage of confidence intervals containing the true population mean using the two proposed algorithms with the percentage obtained from the traditional method based on the central limit theorem. It is shown that the normal algorithm is the most robust procedure against many different distributional error assumptions. |
| |
Keywords: | Auditing Likelihood profile function Likelihood ratio procedure Robustness Simulation |
|
|