首页 | 本学科首页   官方微博 | 高级检索  
     


Double-smoothing for bias reduction in local linear regression
Authors:Hua He  Li-Shan Huang
Affiliation:Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
Abstract:Local linear regression involves fitting a straight line segment over a small region whose midpoint is the target point x, and the local linear estimate at x   is the estimated intercept of that straight line segment, with an asymptotic bias of order h2h2 and variance of order (nh)-1(nh)-1 (h is the bandwidth). In this paper, we propose a new estimator, the double-smoothing local linear estimator, which is constructed by integrally combining all fitted values at x   of local lines in its neighborhood with another round of smoothing. The proposed estimator attempts to make use of all information obtained from fitting local lines. Without changing the order of variance, the new estimator can reduce the bias to an order of h4h4. The proposed estimator has better performance than local linear regression in situations with considerable bias effects; it also has less variability and more easily overcomes the sparse data problem than local cubic regression. At boundary points, the proposed estimator is comparable to local linear regression. Simulation studies are conducted and an ethanol example is used to compare the new approach with other competitive methods.
Keywords:Asymptotic bias   Asymptotic variance   Edge effect   Local polynomial regression   Mean square error   Nonparametric regression
本文献已被 ScienceDirect 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号