首页 | 本学科首页   官方微博 | 高级检索  
     


Minimax estimation of normal precisions via expansion estimators
Authors:Hisayuki Tsukuma  Tatsuya Kubokawa
Affiliation:1. Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan;2. Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Abstract:
In this paper, the simultaneous estimation of the precision parameters of k normal distributions is considered under the squared loss function in a decision-theoretic framework. Several classes of minimax estimators are derived by using the chi-square identity, and the generalized Bayes minimax estimators are developed out of the classes. It is also shown that the improvement on the unbiased estimators is characterized by the superharmonic function. This corresponds to Stein's [1981. Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–1151] result in simultaneous estimation of normal means.
Keywords:Bayes estimation   Chi-square identity   Decision theory   Empirical Bayes estimation   James&ndash  Stein estimator   Risk function   Simultaneous estimation   Superharmonic function.
本文献已被 ScienceDirect 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号