首页 | 本学科首页   官方微博 | 高级检索  
     


A simple approach for varying-coefficient model selection
Authors:Chenlei Leng
Affiliation:Department of Statistics and Applied Probability, National University of Singapore, 6 Science Drive 2, SG 117546, Republic of Singapore
Abstract:In varying-coefficient models, an important question is to determine whether some of the varying coefficients are actually invariant coefficients. This article proposes a penalized likelihood method in the framework of the smoothing spline ANOVA models, with a penalty designed toward the goal of automatically distinguishing varying coefficients and those which are not varying. Unlike the stepwise procedure, the method simultaneously quantifies and estimates the coefficients. An efficient algorithm is given and ways of choosing the smoothing parameters are discussed. Simulation results and an analysis on the Boston housing data illustrate the usefulness of the method. The proposed approach is further extended to longitudinal data analysis.
Keywords:Component selection and smoothing operator   Smoothing spline   Varying-coefficient models
本文献已被 ScienceDirect 等数据库收录!
相似文献(共20条):
[1]、Soh,J. E.,Huang,Yijian.A varying-coefficient model for gap times between recurrent events[J].Lifetime data analysis,2021,27(3):437-459.
[2]、Weihua Zhao,Jicai Liu,Zhensheng Huang,Yazhao Lv.Generalized varying-coefficient single-index model[J].Statistics,2013,47(6):1311-1323.
[3]、Liugen Xue,Zhen Pang.Statistical inference for a single-index varying-coefficient model[J].Statistics and Computing,2013,23(5):589-599.
[4]、Bandwidth selection through cross-validation for semi-parametric varying-coefficient partially linear models[J].Journal of Statistical Computation and Simulation
[5]、A SINful approach to Gaussian graphical model selection[J].Journal of statistical planning and inference
[6]、Model selection criteria for the varying-coefficient modelling via regularized basis expansions[J].Journal of Statistical Computation and Simulation
[7]、Hyunsook Lee,G. Jogesh Babu.A jackknife type approach to statistical model selection[J].Journal of statistical planning and inference,2012,142(1):301-311.
[8]、Ozge Tanju.A cluster tree based model selection approach for logistic regression classifier[J].Journal of Statistical Computation and Simulation,2018,88(7):1394-1414.
[9]、Yuping Chen,Wingkam Fung.Structural identification and variable selection in high-dimensional varying-coefficient models[J].Journal of nonparametric statistics,2017,29(2):258-279.
[10]、Robust variable selection in modal varying-coefficient models with longitudinal[J].Journal of Statistical Computation and Simulation
[11]、Hu Yang,Chaohui Guo.Robust estimation and variable selection for varying-coefficient single-index models based on modal regression[J].统计学通讯:理论与方法,2013,42(14):4048-4067.
[12]、Some new model selection criteria in simple regression[J].Journal of Statistical Computation and Simulation
[13]、Karl W. Broman, Terence P. Speed.A model selection approach for the identification of quantitative trait loci in experimental crosses[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2002,64(4):641-656.
[14]、David J. Nott,Li Jialiang.A sign based loss approach to model selection in nonparametric regression[J].Statistics and Computing,2010,20(4):485-498.
[15]、Peixin Zhao,Yiping Yang.A new orthogonality-based estimation for varying-coefficient partially linear models[J].Journal of the Korean Statistical Society,2019,48(1):29-39.
[16]、Irene Poli,Alberto Roverato.A genetic algorithm for graphical model selection[J].Statistical Methods and Applications,1998,7(2):197-208.
[17]、Cristian Gatu,Erricos John Kontoghiorghes.A fast algorithm for non-negativity model selection[J].Statistics and Computing,2013,23(3):403-411.
[18]、Gabriel Huerta.A Bayesian approach to sample size selection in a multiple hypotheses test for the Bernoulli model[J].Journal of applied statistics,1996,23(4):385-394.
[19]、General partially linear varying-coefficient transformation model with right censored data[J].Journal of statistical planning and inference
[20]、Supawadee Wichitchan,Weixin Yao.A simple root selection method for univariate finite normal mixture models[J].统计学通讯:理论与方法,2019,48(15):3778-3794.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号