首页 | 本学科首页   官方微博 | 高级检索  
     


Partial covariate adjusted regression
Authors:Damla Şentü  rk,Danh V. Nguyen
Affiliation:1. Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA;2. Division of Biostatistics, University of California, Davis, CA 95616, USA
Abstract:Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed [?entürk, D., Müller, H.G., 2005. Covariate adjusted regression. Biometrika 92, 75–89]. The available data have been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set.
Keywords:Asymptotic normality   Binning   Confidence intervals   Multiple regression   Varying-coefficient models
本文献已被 ScienceDirect 等数据库收录!
相似文献(共20条):
[1]、Kernel adjusted nonparametric regression[J].Journal of statistical planning and inference
[2]、Dawn W. Blackhurst,Mark D. Schluchter.Logistic regression with a partially observed covariate[J].统计学通讯:模拟与计算,2013,42(1):163-177.
[3]、Angela Winnett, Peter Sasieni.Iterated residuals and time-varying covariate effects in Cox regression[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2003,65(2):473-488.
[4]、Xiaoping Shi,Yanyan Liu.Auxiliary covariate in additive hazards regression for survival data[J].Journal of nonparametric statistics,2014,26(1):101-113.
[5]、Limin Peng,Jinfeng Xu,Nancy Kutner.Shrinkage estimation of varying covariate effects based on quantile regression[J].Statistics and Computing,2014,24(5):853-869.
[6]、Martin, Huber.Testing for covariate balance using quantile regression and resampling methods[J].Journal of applied statistics,2011,38(12):2881-2899.
[7]、Wen CC.Cox regression for mixed case interval-censored data with covariate errors[J].Lifetime data analysis,2012,18(3):321-338.
[8]、Peter Kooreman.Bounds on the regression coefficients when a covariate is categorized[J].统计学通讯:理论与方法,2013,42(8):2373-2380.
[9]、Partial functional linear regression[J].Journal of statistical planning and inference
[10]、Folefac D. Atem,Jing Qian,Jacqueline E. Maye,Keith A. Johnson.Multiple imputation of a randomly censored covariate improves logistic regression analysis[J].Journal of applied statistics,2016,43(15):2886-2896.
[11]、Torben Martinussen,Klaus K. Holst,Thomas H. Scheike.Cox regression with missing covariate data using a modified partial likelihood method[J].Lifetime data analysis,2016,22(4):570-588.
[12]、Li-An Lin,Barry R. Davis.Bayesian regression model for recurrent event data with event-varying covariate effects and event effect[J].Journal of applied statistics,2018,45(7):1260-1276.
[13]、Anil K. Srivastava,Virendra K. Srivastava,Aman Ullah.The coefficient of determination and its adjusted version in linear regression models[J].Econometric Reviews,2013,32(2):229-240.
[14]、Anil K. Srivastava ,Virendra K. Srivastava,Aman Ullah.The coefficient of determination and its adjusted version in linear regression models[J].Econometric Reviews,1995,14(2):229-240.
[15]、Sharon X. Xie,C. Y. Wang,& Ross L. Prentice.A risk set calibration method for failure time regression by using a covariate reliability sample[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2001,63(4):855-870.
[16]、Nygård S,Borgan O,Lingjaerde OC,Størvold HL.Partial least squares Cox regression for genome-wide data[J].Lifetime data analysis,2008,14(2):179-195.
[17]、H. Pruscha.Partial residuals in cumulative regression models for ordinal data[J].Statistical Papers,1994,35(1):273-284.
[18]、Yuh-Jenn Wu.Consistent estimation approach to tackling collinearity and Berkson-type measurement error in linear regression using adjusted Wald-type estimator[J].统计学通讯:理论与方法,2017,46(11):5501-5516.
[19]、Garritt L. Page,Fernando A. Quintana.Calibrating covariate informed product partition models[J].Statistics and Computing,2018,28(5):1009-1031.
[20]、Josefa Lopes Troya.Cyclic designs for a covariate model[J].Journal of statistical planning and inference,1982,7(1):49-75.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号