首页 | 本学科首页   官方微博 | 高级检索  
     


Robust tests for the common principal components model
Authors:Graciela Boente  Ana M. Pires  Isabel M. Rodrigues
Affiliation:1. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina;2. Departamento de Matemática and CEMAT, Instituto Superior Técnico, Technical University of Lisbon (TULisbon), Lisboa, Portugal
Abstract:When dealing with several populations, the common principal components (CPC) model assumes equal principal axes but different variances along them. In this paper, a robust log-likelihood ratio statistic allowing to test the null hypothesis of a CPC model versus no restrictions on the scatter matrices is introduced. The proposal plugs into the classical log-likelihood ratio statistic robust scatter estimators. Using the same idea, a robust log-likelihood ratio and a robust Wald-type statistic for testing proportionality against a CPC model are considered. Their asymptotic distributions under the null hypothesis and their partial influence functions are derived. A small simulation study allows to compare the behavior of the classical and robust tests, under normal and contaminated data.
Keywords:Common principal components   Log-likelihood ratio test   Plug-in methods   Proportional scatter matrices   Robust estimation   Wald-type test
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号