首页 | 本学科首页   官方微博 | 高级检索  
     


Multivariate outlier detection in incomplete survey data: the epidemic algorithm and transformed rank correlations
Authors:  dric Bé  guin, Beat Hulliger
Affiliation:University of Neuchâtel, Switzerland.; Swiss Federal Statistical Office, Neuchâtel, Switzerland.
Abstract:Summary.  As a part of the EUREDIT project new methods to detect multivariate outliers in incomplete survey data have been developed. These methods are the first to work with sampling weights and to be able to cope with missing values. Two of these methods are presented here. The epidemic algorithm simulates the propagation of a disease through a population and uses extreme infection times to find outlying observations. Transformed rank correlations are robust estimates of the centre and the scatter of the data. They use a geometric transformation that is based on the rank correlation matrix. The estimates are used to define a Mahalanobis distance that reveals outliers. The two methods are applied to a small data set and to one of the evaluation data sets of the EUREDIT project.
Keywords:Data depth    Missing value    Multivariate data    Outlier detection    Robustness    Sampling weight
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号