首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible empirical Bayes estimation for wavelets
Authors:Merlise Clyde,&   Edward I. George
Affiliation:Duke University, Durham, USA,;University of Texas, Austin, USA
Abstract:
Wavelet shrinkage estimation is an increasingly popular method for signal denoising and compression. Although Bayes estimators can provide excellent mean-squared error (MSE) properties, the selection of an effective prior is a difficult task. To address this problem, we propose empirical Bayes (EB) prior selection methods for various error distributions including the normal and the heavier-tailed Student t -distributions. Under such EB prior distributions, we obtain threshold shrinkage estimators based on model selection, and multiple-shrinkage estimators based on model averaging. These EB estimators are seen to be computationally competitive with standard classical thresholding methods, and to be robust to outliers in both the data and wavelet domains. Simulated and real examples are used to illustrate the flexibility and improved MSE performance of these methods in a wide variety of settings.
Keywords:Bayesian model averaging    EM algorithm    Hierarchical models    Model selection    Multiple shrinkage    Orthogonal regression    Outliers    Robustness    Thresholding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号