首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic properties of nonparametric regression for long memory random fields
Authors:Lihong Wang  Haiyan Cai
Affiliation:1. Department of Mathematics, Institute of Mathematical Science, Nanjing University, China;2. Department of Mathematics and Computer Science, University of Missouri—St. Louis, USA
Abstract:The kernel estimator of spatial regression function is investigated for stationary long memory (long range dependent) random fields observed over a finite set of spatial points. A general result on the strong consistency of the kernel density estimator is first obtained for the long memory random fields, and then, under some mild regularity assumptions, the asymptotic behaviors of the regression estimator are established. For the linear long memory random fields, a weak convergence theorem is also obtained for kernel density estimator. Finally, some related issues on the inference of long memory random fields are discussed through a simulation example.
Keywords:Spatial models   Long memory random fields   Kernel estimation   Asymptotic normality   Strong consistency
本文献已被 ScienceDirect 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号