首页 | 本学科首页   官方微博 | 高级检索  
     


A matching prior for extreme quantile estimation of the generalized Pareto distribution
Authors:Kwok-Wah Ho
Affiliation:Department of Statistics, Chinese University of Hong Kong, Shatin, Hong Kong
Abstract:Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).
Keywords:Quantile estimation   Generalized Pareto distribution   Peaks-over-threshold model   Risk management   Probability matching prior
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号