首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian variable selection for proportional hazards models
Authors:Joseph G. Ibrahim  Ming-Hui Chen  Steven N. MacEachern
Abstract:The authors consider the problem of Bayesian variable selection for proportional hazards regression models with right censored data. They propose a semi-parametric approach in which a nonparametric prior is specified for the baseline hazard rate and a fully parametric prior is specified for the regression coefficients. For the baseline hazard, they use a discrete gamma process prior, and for the regression coefficients and the model space, they propose a semi-automatic parametric informative prior specification that focuses on the observables rather than the parameters. To implement the methodology, they propose a Markov chain Monte Carlo method to compute the posterior model probabilities. Examples using simulated and real data are given to demonstrate the methodology.
Keywords:Cox model  discrete gamma process  Gibbs sampling  nonparametric prior  posterior probability  prior model probability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号