首页 | 本学科首页   官方微博 | 高级检索  
     


The marked empirical process to test nonlinear time series against a large class of alternatives when the random vectors are nonstationary and absolutely regular
Authors:Michel Harel  Echarif Elharfaoui
Affiliation:1. IMT (UMR CNRS 5219) , Université Paul Sabatier , Toulouse Cedex , 31062 , France;2. IUFM du Limousin , 209 boulevard de Vanteaux, 87036 Limoges Cedex 87036, France michel.harel@limousin.iufm.fr;4. EMMID, Département de Mathématiques et Informatique , Université Choua?b Doukkali , Faculté des Sciences El Jadida, Rte Ben Maachou, B.P. 20, 24000, Maroc
Abstract:
In this paper, we propose a method for testing absolutely regular and possibly nonstationary nonlinear time-series, with application to general AR-ARCH models. Our test statistic is based on a marked empirical process of residuals which is shown to converge to a Gaussian process with respect to the Skohorod topology. This testing procedure was first introduced by Stute [Nonparametric model checks for regression, Ann. Statist. 25 (1997), pp. 613–641] and then widely developed by Ngatchou-Wandji [Weak convergence of some marked empirical processes: Application to testing heteroscedasticity, J. Nonparametr. Stat. 14 (2002), pp. 325–339; Checking nonlinear heteroscedastic time series models, J. Statist. Plann. Inference 133 (2005), pp. 33–68; Local power of a Cramer-von Mises type test for parametric autoregressive models of order one, Compt. Math. Appl. 56(4) (2008), pp. 918–929] under more general conditions. Applications to general AR-ARCH models are given.
Keywords:marked empirical process  residuals  model check for regression  nonstationarity  geometrical absolute regularity  general AR-ARCH model  general AR model  skorohod topology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号