Bayesian inference in a matrix normal dynamic linear model with unknown covariance matrices |
| |
Authors: | Manuel Salvador Jose Luis Gallizo Pilar Gargallo |
| |
Affiliation: | 1. Departamento de Métodos Estadísticos, Facultad de Ciencias Económicas y Empresariales , Universidad de Zaragoza , Gran Vía 2, 50005, Zaragoza, Spain salvador@posta.unizar.es;3. Departamento de Administración de Empresas y Gestión Económica de los Recursos Naturales , Universidad de Lleida , Jaume II, 73, Campus Cappont, Lleida, Spain;4. Departamento de Métodos Estadísticos, Escuela Universitaria de Empresariales , Universidad de Zaragoza , Campus del Actur, María de Luna 3, 50018, Zaragoza, Spain |
| |
Abstract: | ![]() In this paper, we consider the problem of estimating the parameters of a matrix normal dynamic linear model when the variance and covariance matrices of its error terms are unknown and can be changing over time. Given that the analysis is not conjugate, we use simulation methods based on Monte Carlo Markov chains to estimate the parameters of the model. This analysis allows us to carry out a dynamic principal components analysis in a set of multivariate time series. Furthermore, it permits the treatment of series with different lengths and with missing data. The methodology is illustrated with two empirical examples: the value added distribution of the firms operating in the manufacturing sector of the countries participating in the BACH project, and the joint evolution of a set of international stock-market indices. |
| |
Keywords: | MNDLM Gibbs sampling Matrix normal Dynamic principal components Multivariate beta |
|
|