首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian inference in a matrix normal dynamic linear model with unknown covariance matrices
Authors:Manuel Salvador  Jose Luis Gallizo  Pilar Gargallo
Affiliation:1. Departamento de Métodos Estadísticos, Facultad de Ciencias Económicas y Empresariales , Universidad de Zaragoza , Gran Vía 2, 50005, Zaragoza, Spain salvador@posta.unizar.es;3. Departamento de Administración de Empresas y Gestión Económica de los Recursos Naturales , Universidad de Lleida , Jaume II, 73, Campus Cappont, Lleida, Spain;4. Departamento de Métodos Estadísticos, Escuela Universitaria de Empresariales , Universidad de Zaragoza , Campus del Actur, María de Luna 3, 50018, Zaragoza, Spain
Abstract:
In this paper, we consider the problem of estimating the parameters of a matrix normal dynamic linear model when the variance and covariance matrices of its error terms are unknown and can be changing over time. Given that the analysis is not conjugate, we use simulation methods based on Monte Carlo Markov chains to estimate the parameters of the model. This analysis allows us to carry out a dynamic principal components analysis in a set of multivariate time series. Furthermore, it permits the treatment of series with different lengths and with missing data. The methodology is illustrated with two empirical examples: the value added distribution of the firms operating in the manufacturing sector of the countries participating in the BACH project, and the joint evolution of a set of international stock-market indices.
Keywords:MNDLM  Gibbs sampling  Matrix normal  Dynamic principal components  Multivariate beta
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号