首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter selection in modified histogram estimates
Authors:Alain Berlinet  Gérard Biau
Affiliation:Institut de Mathématiques et de Modélisation de Montpellier, UMR CNRS 5149, Equipe de Probabilités et Statistique , Université Montpellier II , Cc 051, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
Abstract:A multivariate modified histogram density estimate depending on a reference density g and a partition P has been proved to have good consistency properties according to several information theoretic criteria. Given an i.i.d. sample, we show how to select automatically both g and P so that the expected L 1 error of the corresponding selected estimate is within a given constant multiple of the best possible error plus an additive term which tends to zero under mild assumptions. Our method is inspired by the combinatorial tools developed by Devroye and Lugosi [Devroye, L. and Lugosi, G., 2001, Combinatorial Methods in Density Estimation (New York, NY: Springer–Verlag)] and it includes a wide range of reference density and partition models. Results of simulations are also presented.
Keywords:Modified histogram estimate  Nonparametric estimation  Partition  Vapnik–Chervonenkis dimension
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号