Abstract: | The paper presents an overview of maximum likelihood estimation using simulated likelihood, including the use of antithetic variables and evaluation of the simulation error of the resulting estimates. It gives a general purpose implementation of simulated maximum likelihood and uses it to re‐visit four models that have previously appeared in the published literature: a state–space model for count data; a nested random effects model for binomial data; a nonlinear growth model with crossed random effects; and a crossed random effects model for binary salamander‐mating data. In the case of the last three examples, this appears to be the first time that maximum likelihood fits of these models have been presented. |