Abstract: | ![]() Abstract. This paper deals with parametric inference for continuous-time stochastic volatility models observed at discrete points in time. We consider approximate maximum likelihood estimation: for the k th-order approximation, we pretend that the observations form a k th-order Markov chain, find the corresponding approximate log-likelihood function, and maximize it with respect to θ . The approximate log-likelihood function is not known analytically, but can easily be calculated by simulation. For each k , the method yields consistent and asymptotically normal estimators. Simulations from a model based on the Cox–Ingersoll–Ross model are used for illustration. |