首页 | 本学科首页   官方微博 | 高级检索  
     


Hard thresholding regression
Authors:Qiang Sun  Bai Jiang  Hongtu Zhu  Joseph G. Ibrahim
Abstract:
In this paper, we propose the hard thresholding regression (HTR) for estimating high‐dimensional sparse linear regression models. HTR uses a two‐stage convex algorithm to approximate the ?0‐penalized regression: The first stage calculates a coarse initial estimator, and the second stage identifies the oracle estimator by borrowing information from the first one. Theoretically, the HTR estimator achieves the strong oracle property over a wide range of regularization parameters. Numerical examples and a real data example lend further support to our proposed methodology.
Keywords:best subset selection  Lasso  linear programming  oracle property  sparsity  variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号