首页 | 本学科首页   官方微博 | 高级检索  
     


A general central limit theorem and a subsampling variance estimator for α‐mixing point processes
Authors:Christophe Ange Napol  on Biscio,Rasmus Waagepetersen
Affiliation:Christophe Ange Napoléon Biscio,Rasmus Waagepetersen
Abstract:We establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.
Keywords:α  ‐mixing  central limit theorem  estimating function  marked point process  spatial point process  subsampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号