首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal False Discovery Rate Control with Kernel Density Estimation in a Microarray Experiment
Authors:Moonsu Kang
Affiliation:Department of Information Statistics, Gangneung-Wonju National University, Gangneung-si, Republic of Korea
Abstract:Most of current false discovery rate (FDR) procedures in a microarray experiment assume restrictive dependence structures, resulting in being less reliable. FDR controlling procedure under suitable dependence structures based on Poisson distributional approximation is shown. Unlike other procedures, the distribution of false null hypotheses is estimated by using kernel density estimation allowing for dependent structures among the genes. Furthermore, we develop an FDR framework that minimizes the false nondiscovery rate (FNR) with a constraint on the controlled level of the FDR. The performance of the proposed FDR procedure is compared with that of other existing FDR controlling procedures, with an application to the microarray study of simulated data.
Keywords:False discovery rate  False nondiscovery rate  Kernel density estimation  Microarray data  Poisson approximation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号