首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Approaches to blockmodeling dynamic networks: A Monte Carlo simulation study
Institution:Faculty of Social Sciences, University of Ljubljana, Kardeljeva ploščad 5, 1000 Ljubljana, Slovenia
Abstract:Blockmodeling refers to a variety of statistical methods for reducing and simplifying large and complex networks. While methods for blockmodeling networks observed at one time point are well established, it is only recently that researchers have proposed several methods for analysing dynamic networks (i.e., networks observed at multiple time points). The considered approaches are based on k-means or stochastic blockmodeling, with different ways being used to model time dependency among time points. Their novelty means they have yet to be extensively compared and evaluated and the paper therefore aims to compare and evaluate them using Monte Carlo simulations. Different network characteristics are considered, including whether tie formation is random or governed by local network mechanisms. The results show the Dynamic Stochastic Blockmodel (Matias and Miele 2017) performs best if the blockmodel does not change; otherwise, the Stochastic Blockmodel for Multipartite Networks (Bar-Hen et al. 2020) does.
Keywords:Dynamic networks  Stochastic blockmodeling  K-means blockmodeling  Simulations  Local mechanisms  Evaluation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号