首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法的成本敏感线性集成多分类器的客户流失研究
引用本文:罗彬,邵培基,罗尽尧,刘独玉,夏国恩. 基于蚁群算法的成本敏感线性集成多分类器的客户流失研究[J]. 中国管理科学, 2010, 18(3): 58-67
作者姓名:罗彬  邵培基  罗尽尧  刘独玉  夏国恩
作者单位:1. 电子科技大学经济与管理学院, 四川成都610054;2. 电子科技大学应用数学学院, 四川成都610054;3. 广西财经学院工商管理系, 广西南宁530003
基金项目:国家自然科学基金资助项目(70801021);中国博士后科学基金资助项目(20080431276);教育部人文社会科学资助项目(08JC630019)
摘    要:针对电信客户流失预测问题的复杂性,融合自组织神经网络良好的连续属性值离散化优势、粗糙集理论出色的属性约简功能和蚁群优化算法全局的随机搜索特点,在模型集成技术和成本敏感学习理论的基础上,提出了一种新的基于蚁群算法的成本敏感线性集成多分类器的电信客户流失预测模型。构建该集成模型可分为4个阶段:(1)连续属性值的离散处理:利用自组织神经网络对连续属性值进行非监督离散化处理;(2)原始属性集的约简处理:使用粗糙集理论按属性重要性原则对离散属性进行约简;(3)子分类器的建立:分别使用NaiveBayes、Logistic回归、多层感知器和决策树等4种差异性很大的分类技术在约简属性集上建立4个对应的客户流失预测子分类器;(4)子分类器的集成:基于成本敏感学习理论,构建了4种不同的线性集成模型,采用蚁群优化算法求解集成模型的最优线性组合权重系数。将该模型应用于某电信客户流失预测,其实验结果表明该集成方法是可行且有效的。

关 键 词:客户流失  自组织神经网络  粗糙集理论  蚁群算法  分类器集成  成本敏感学习  
收稿时间:2009-08-12
修稿时间:2010-05-27

Customer Churn Prediction Model Fusing Multiple Classifier Based on Cost Sensitivity Study Using Ant Colony Optimization
LUO Bin,SHAO Pei-ji,LUO Jin-yao,LIU Du-yu,XIA Guo-en. Customer Churn Prediction Model Fusing Multiple Classifier Based on Cost Sensitivity Study Using Ant Colony Optimization[J]. Chinese Journal of Management Science, 2010, 18(3): 58-67
Authors:LUO Bin  SHAO Pei-ji  LUO Jin-yao  LIU Du-yu  XIA Guo-en
Affiliation:1. School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 610054, China;2. College of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China;3. Department of Business Management, Guangxi University of Finance and Economics, Nanning 530003, China
Abstract:According to the complexity of customer churn prediction in Telecom,integrating the characters,such as the excellent indicative of the self-organizing neural network(SOM)when discretizing continuous at tributes,the outstanding capability of rough set theory(RS)when reducing the attributes,and the feature of the ant colony optimization(ACO)when searching atrandom globally,based on the technique of model integration and the theory of cost sensitivity study,a new customer churn model is proposed,i.e.fusing multiple classifiers based on cost sensitivity study using ant colony optimization(ACO). When constructing the model,there are four steps:(1)Discretizing the continuous at tributes unsupervis edly using SOM;(2)Reducing the discrete attributes according to the importance of the attributes using RS;(3)Building four sub classifiers on the reduced attributes sets using four completely different classification techniques including NaiveBayes,Logistic Regression,Multilayer Perceptron and Decision Tree,respectively;(4)Fusing the sub classifiers,that based on cost sensitive theory,and integrated four models linearly,which weight sobtained through the ant colony optimization(ACO).Applying the model to customer churn research in a telecom munication enterprise,the experiment results suggest that the fusing technique is feasible and very efficient.
Keywords:customer churn  SOM  rough sets  ant colony optimization(ACO)  multiple classifiers fusing  cost sensitive study  
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号