首页 | 本学科首页   官方微博 | 高级检索  
     


Semi-parametric forecasts of the implied volatility surface using regression trees
Authors:Francesco Audrino  Dominik Colangelo
Affiliation:1.Fachbereich für Mathematik und Statistik,University of St. Gallen,St. Gallen,Switzerland;2.Swiss Finance Institute,Università della Svizzera italiana, USI,Lugano,Switzerland
Abstract:We present a new semi-parametric model for the prediction of implied volatility surfaces that can be estimated using machine learning algorithms. Given a reasonable starting model, a boosting algorithm based on regression trees sequentially minimizes generalized residuals computed as differences between observed and estimated implied volatilities. To overcome the poor predictive power of existing models, we include a grid in the region of interest, and implement a cross-validation strategy to find an optimal stopping value for the boosting procedure. Back testing the out-of-sample performance on a large data set of implied volatilities from S&P 500 options, we provide empirical evidence of the strong predictive power of our model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号