Using quantile averages in matched observational studies |
| |
Authors: | P. R. Rosenbaum |
| |
Affiliation: | University of Pennsylvania, Philadelphia, USA |
| |
Abstract: | In two observational studies, one investigating the effects of minimum wage laws on employment and the other of the effects of exposures to lead, an estimated treatment effect's sensitivity to hidden bias is examined. The estimate uses the combined quantile averages that were introduced in 1981 by B. M. Brown as simple, efficient, robust estimates of location admitting both exact and approximate confidence intervals and significance tests. Closely related to Gastwirth's estimate and Tukey's trimean, the combined quantile average has asymptotic efficiency for normal data that is comparable with that of a 15% trimmed mean, and higher efficiency than the trimean, but it has resistance to extreme observations or breakdown comparable with that of the trimean and better than the 15% trimmed mean. Combined quantile averages provide consistent estimates of an additive treatment effect in a matched randomized experiment. Sensitivity analyses are discussed for combined quantile averages when used in a matched observational study in which treatments are not randomly assigned. In a sensitivity analysis in an observational study, subjects are assumed to differ with respect to an unobserved covariate that was not adequately controlled by the matching, so that treatments are assigned within pairs with probabilities that are unequal and unknown. The sensitivity analysis proposed here uses significance levels, point estimates and confidence intervals based on combined quantile averages and examines how these inferences change under a range of assumptions about biases due to an unobserved covariate. The procedures are applied in the studies of minimum wage laws and exposures to lead. The first example is also used to illustrate sensitivity analysis with an instrumental variable. |
| |
Keywords: | Combined quantile average Gastwirth's estimate Instrumental variable Matched pairs Non-randomized experiment Observational study Permutation inference Randomization inference Robust estimate Sensitivity analysis Trimean |
|
|