首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating mixtures of normal distributions via empirical characteristic function
Authors:Kien C. Tran
Affiliation: a Department of Economics 9 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan, Canada
Abstract:
This paper uses the empirical characteristic function (ECF) procedure to estimate the parameters of mixtures of normal distributions. Since the characteristic function is uniformly bounded, the procedure gives estimates that are numerically stable. It is shown that, using Monte Carlo simulation, the finite sample properties of th ECF estimator are very good, even in the case where the popular maximum likelihood estimator fails to exist. An empirical application is illustrated using the monthl excess return of the Nyse value-weighted index.
Keywords:constrained Maximum-likelihood  empirical characteristic function  grid points  mixtures of normal distribution  moment generating function  Monte Carlo simulation
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号