首页 | 本学科首页   官方微博 | 高级检索  
     


Trimmed likelihood estimators for lifetime experiments and their influence functions
Authors:Christine H. Müller  Nuri Celik  Brenton R. Clarke
Affiliation:1. Faculty of Statistics, TU Dortmund University, Dortmund, Germany;2. Department of Statistics, Bartin University, Turkey;3. School of Engineering and Information Technology, Murdoch University, Perth, Australia
Abstract:We study the behaviour of trimmed likelihood estimators (TLEs) for lifetime models with exponential or lognormal distributions possessing a linear or nonlinear link function. In particular, we investigate the difference between two possible definitions for the TLE, one called original trimmed likelihood estimator (OTLE) and one called modified trimmed likelihood estimator (MTLE) which is the finite sample version of a form for location and linear regression used by Bednarski and Clarke [Trimmed likelihood estimation of location and scale of the normal distribution. Aust J Statist. 1993;35:141–153, Asymptotics for an adaptive trimmed likelihood location estimator. Statistics. 2002;36:1–8] and Bednarski et al. [Adaptive trimmed likelihood estimation in regression. Discuss Math Probab Stat. 2010;30:203–219]. The OTLE is always an MTLE but the MTLE may not be unique even in cases where the OLTE is unique. We compare especially the functional forms of both types of estimators, characterize the difference with the implicit function theorem and indicate situations where they coincide and where they do not coincide. Since the functional form of the MTLE has a simpler form, we use it then for deriving the influence function, again with the help of the implicit function theorem. The derivation of the influence function for the functional form of the OTLE is similar but more complicated.
Keywords:outlier robustness  robust estimation  generalized linear model  lifetime distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号