首页 | 本学科首页   官方微博 | 高级检索  
     


Penalized contrast estimator for adaptive density deconvolution
Authors:Fabienne Comte  Yves Rozenholc  Marie‐Luce Taupin
Abstract:The authors consider the problem of estimating the density g of independent and identically distributed variables XI, from a sample Z1,… Zn such that ZI = XI + σ? for i = 1,…, n, and E is noise independent of X, with σ? having a known distribution. They present a model selection procedure allowing one to construct an adaptive estimator of g and to find nonasymptotic risk bounds. The estimator achieves the minimax rate of convergence, in most cases where lower bounds are available. A simulation study gives an illustration of the good practical performance of the method.
Keywords:Adaptive estimation  density deconvolution  model selection  penalized contrast  projection estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号