首页 | 本学科首页   官方微博 | 高级检索  
     


Small-sample likelihood inference in extreme-value regression models
Abstract:We deal with a general class of extreme-value regression models introduced by Barreto-Souza and Vasconcellos [Bias and skewness in a general extreme-value regression model, Comput. Statist. Data Anal. 55 (2011), pp. 1379–1393]. Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as χ2 with a high degree of accuracy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite-sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell [The gradient statistic, Comput. Sci. Stat. 34 (2002), pp. 206–215], and the adjusted likelihood ratio test obtained in this article. Our simulations favour the latter. Applications of our results are presented.
Keywords:extreme-value regression  gradient test  Gumbel distribution  likelihood ratio test  nonlinear models  score test  small-sample adjustments  Wald test
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号