首页 | 本学科首页   官方微博 | 高级检索  
     


BL-GARCH models with elliptical distributed innovations
Abstract:In this work, we discuss the class of bilinear GARCH (BL-GARCH) models that are capable of capturing simultaneously two key properties of non-linear time series: volatility clustering and leverage effects. It has often been observed that the marginal distributions of such time series have heavy tails; thus we examine the BL-GARCH model in a general setting under some non-normal distributions. We investigate some probabilistic properties of this model and we conduct a Monte Carlo experiment to evaluate the small-sample performance of the maximum likelihood estimation (MLE) methodology for various models. Finally, within-sample estimation properties were studied using S&P 500 daily returns, when the features of interest manifest as volatility clustering and leverage effects. The main results suggest that the Student-t BL-GARCH seems highly appropriate to describe the S&P 500 daily returns.
Keywords:BL-GARCH process  elliptical distribution  leverage effects  maximum likelihood  Monte Carlo method  volatility clustering
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号