首页 | 本学科首页   官方微博 | 高级检索  
     


Bootstrap methods for bias correction and confidence interval estimation for nonlinear quantile regression of longitudinal data
Abstract:This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.
Keywords:autocorrelated errors  bias reduction  dependent errors  median regression  panel data  repeated measurements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号