首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating the variance of a normal population by utilizing the information in a sample from a second related normal population
Abstract:A class of estimators of the variance σ1 2 of a normal population is introduced, by utilization the information in a sample from a second normal population with different mean and variance σ2 2, under the restriction that σ1 2?≤?σ2 2. Simulation results indicate that some members of this class are more efficient than the usual minimum variance unbiased estimator (MVUE) of σ1 2, Stein estimator and Mehta and Gurland estimator. The case of known and unknown means are considered.
Keywords:Normal population  Prior  Mean squared error  Posterior  Bayesian estimation  Generalized Bayes  Stein estimator  Mehta and Gurland estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号