Abstract: | We propose a strongly root-n consistent simulation-based estimator for the generalized linear mixed models. This estimator is constructed based on the first two marginal moments of the response variables, and it allows the random effects to have any parametric distribution (not necessarily normal). Consistency and asymptotic normality for the proposed estimator are derived under fairly general regularity conditions. We also demonstrate that this estimator has a bounded influence function and that it is robust against data outliers. A bias correction technique is proposed to reduce the finite sample bias in the estimation of variance components. The methodology is illustrated through an application to the famed seizure count data and some simulation studies. |