首页 | 本学科首页   官方微博 | 高级检索  
     


A generalization of the logistic linear'model
Abstract:

Consider the logistic linear model, with some explanatory variables overlooked. Those explanatory variables may be quantitative or qualitative. In either case, the resulting true response variable is not a binomial or a beta-binomial but a sum of binomials. Hence, standard computer packages for logistic regression can be inappropriate even if an overdispersion factor is incorporated. Therefore, a discrete exponential family assumption is considered to broaden the class of sampling models. Likelihood and Bayesian analyses are discussed. Bayesian computation techniques such as Laplacian approximations and Markov chain simulations are used to compute posterior densities and moments. Approximate conditional distributions are derived and are shown to be accurate. The Markov chain simulations are performed effectively to calculate posterior moments by using the approximate conditional distributions. The methodology is applied to Keeler's hardness of winter wheat data for checking binomial assumptions and to Matsumura's Accounting exams data for detailed likelihood and Bayesian analyses.
Keywords:Gibbs Sampling  Laplacian Approximation  Metropolis-Hastings Algorithm  Beta-binomial Model  Discrete Exponential Family Model  Logistic Regression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号