相似文献(共20条): |
[1]、 | S. Joshi,M. Shah.Sequential analysis applied to testing the mean of an inverse gaussian distribution with known coefficient of variation[J].统计学通讯:理论与方法,2013,42(4):1457-1466. |
[2]、 | A comparison of various estimators of the mean of an inverse gaussian distribution[J].Journal of Statistical Computation and Simulation |
[3]、 | Katuomi Hirano,Kōsei Iwase.Minimum risk scale equivariant estimator: estimating the mean of an inverse gaussian distribution with known coefficient of variation[J].统计学通讯:理论与方法,2013,42(1):189-197. |
[4]、 | H. K. Hsieh.Inferences on the coefficient of variation of an inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(5):1589-1605. |
[5]、 | K[otilde]sei Iwase.Linear regression through the origin with constant coefficient of variation for the inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(10):3587-3593. |
[6]、 | A. Laheetharan,P. Wijekoon.Mean square error comparison among variance estimators with known coefficient of variation[J].Statistical Papers,2011,52(1):171-201. |
[7]、 | B.N. Pandey,H.J. Malik,P.K. Dubey.Bayesian shrinkage estimators for a measure of dispersion of an inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(9):2261-2270. |
[8]、 | S.N. Pandey,H.J. Malik.Some improved estimators for a measures of dispersion of an inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(11):3935-3949. |
[9]、 | R. L. Edgeman,P. M. Salzberg.A sequential sampling plan for the inverse gaussian mean[J].Statistical Papers,1991,32(1):45-53. |
[10]、 | B. N Pandey,H. J. Malik.Testing for the mean of the inverse gaussian distribution and adaptive estimation of parameters[J].统计学通讯:理论与方法,2013,42(2):629-637. |
[11]、 | Kok Huat Lee.Estimation of variance of mean using known coefficient of variation[J].统计学通讯:理论与方法,2013,42(5):503-514. |
[12]、 | E. Wencheko,P. Wijekoon.Improved estimation of the mean in one-parameter exponential families with known coefficient of variation[J].Statistical Papers,2005,46(1):101-115. |
[13]、 | W.J. Padgett,L.J. Wei.Estimation for the three-parameter inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(2):129-137. |
[14]、 | A. R. Sen.Estimation of the population mean when the coefficient of variation is known[J].统计学通讯:理论与方法,2013,42(7):657-672. |
[15]、 | G.G. Khatri,R.T. Ratani.On estimation of the mean parameter of a truncated normal disiribution with known coefficient of variation[J].统计学通讯:理论与方法,2013,42(3):237-244. |
[16]、 | Jesse M. Shapiro.Sequential analysis applied to testing the mean of a mormal population with known coefficient of variation[J].统计学通讯:理论与方法,2013,42(1):39-49. |
[17]、 | G Jones,R.C.H. Cheng.On the asymptotic efficiency of moment and maximum likelihood estimators in the three-parameter inverse gaussian distribution[J].统计学通讯:理论与方法,2013,42(18):2307-2314. |
[18]、 | Koji Kanefuji,Kosei Iwase.Estimation for a scale parameter with known coefficient of variation[J].Statistical Papers,1998,39(4):377-388. |
[19]、 | S.M. Joshi,S.P. Nabar.Testing the scale parameter of the exponential distribution with known coefficient of variation[J].统计学通讯:理论与方法,2013,42(2):747-756. |
[20]、 | Stephen W. Looney.A comparison of estimators of a common correlation coefficient[J].统计学通讯:模拟与计算,2013,42(2):531-543. |