首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian estimation for time-series regressions improved with exact likelihoods
Abstract:We propose an estimation procedure for time-series regression models under the Bayesian inference framework. With the exact method of Wise [Wise, J. (1955). The autocorrelation function and spectral density function. Biometrika, 42, 151–159], an exact likelihood function can be obtained instead of the likelihood conditional on initial observations. The constraints on the parameter space arising from the stationarity conditions are handled by a reparametrization, which was not taken into consideration by Chib [Chib, S. (1993). Bayes regression with autoregressive errors: A Gibbs sampling approach. J. Econometrics, 58, 275–294] or Chib and Greenberg [Chib, S. and Greenberg, E. (1994). Bayes inference in regression model with ARMA(p, q) errors. J. Econometrics, 64, 183–206]. Simulation studies show that our method leads to better inferential results than their results.
Keywords:Autoregressive process  Exact likelihood  Markov chain Monte Carlo  Partial autocorrelations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号