首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation of copula-based measures of multivariate association from contingency tables
Abstract:Nonparametric estimation of copula-based measures of multivariate association in a continuous random vector X=(X1, …, Xd) is usually based on complete continuous data. In many practical applications, however, these types of data are not readily available; instead aggregated ordinal observations are given, for example, ordinal ratings based on a latent continuous scale. This article introduces a purely nonparametric and data-driven estimator of the unknown copula density and the corresponding copula based on multivariate contingency tables. Estimators for multivariate Spearman's rho and Kendall's tau are based thereon. The properties of these estimators in samples of medium and large size are evaluated in a simulation study. An increasing bias can be observed along with an increasing degree of association between the components. As it is to be expected, the bias is severely influenced by the amount of information available. Additionally, the influence of sample size is only marginal. We further give an empirical illustration based on daily returns of five German stocks.
Keywords:Spearman's rho  Kendall's tau  copula density  aggregated observations  ordinal observations  checkerboard copula  standard extension copula
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号