首页 | 本学科首页   官方微博 | 高级检索  
     


A Multiple Imputation Approach to Linear Regression with Clustered Censored Data
Authors:Pan  Wei  Connett  John E.
Affiliation:(1) Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, Minneapolis, MN, 55455
Abstract:
Weextend Wei and Tanner's (1991) multiple imputation approach insemi-parametric linear regression for univariate censored datato clustered censored data. The main idea is to iterate the followingtwo steps: 1) using the data augmentation to impute for censoredfailure times; 2) fitting a linear model with imputed completedata, which takes into consideration of clustering among failuretimes. In particular, we propose using the generalized estimatingequations (GEE) or a linear mixed-effects model to implementthe second step. Through simulation studies our proposal comparesfavorably to the independence approach (Lee et al., 1993), whichignores the within-cluster correlation in estimating the regressioncoefficient. Our proposal is easy to implement by using existingsoftwares.
Keywords:asymptotic normal data augmentation  Buckley-James method  GEE  generalized least squares  mixed-effects model  Poor Man's data augmentation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号