首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation-based model comparison methodology with application to road accident models
Authors:Bahar Dadashova  Blanca Arenas-Ramírez  José Mira-Mcwilliams  Camino González-Fernández  Francisco Aparicio-Izquierdo
Affiliation:1. Transportation Institute (TTI), Texas A&2. M University, College Station, Texas, USA;3. University Institute of Automobile Research (INSIA), Universidad Politécnica de Madrid, Madrid, Spain
Abstract:This article assumes the goal of proposing a simulation-based theoretical model comparison methodology with application to two time series road accident models. The model comparison exercise helps to quantify the main differences and similarities between the two models and comprises of three main stages: (1) simulation of time series through a true model with predefined properties; (2) estimation of the alternative model using the simulated data; (3) sensitivity analysis to quantify the effect of changes in the true model parameters on alternative model parameter estimates through analysis of variance, ANOVA. The proposed methodology is applied to two time series road accident models: UCM (unobserved components model) and DRAG (Demand for Road Use, Accidents and their Severity). Assuming that the real data-generating process is the UCM, new datasets approximating the road accident data are generated, and DRAG models are estimated using the simulated data. Since these two methodologies are usually assumed to be equivalent, in a sense that both models accurately capture the true effects of the regressors, we are specifically addressing the modeling of the stochastic trend, through the alternative model. Stochastic trend is the time-varying component and is one of the crucial factors in time series road accident data. Theoretically, it can be easily modeled through UCM, given its modeling properties. However, properly capturing the effect of a non-stationary component such as stochastic trend in a stationary explanatory model such as DRAG is challenging. After obtaining the parameter estimates of the alternative model (DRAG), the estimates of both true and alternative models are compared and the differences are quantified through experimental design and ANOVA techniques. It is observed that the effects of the explanatory variables used in the UCM simulation are only partially captured by the respective DRAG coefficients. This a priori, could be due to multicollinearity but the results of both simulation of UCM data and estimating of DRAG models reveal that there is no significant static correlation among regressors. Moreover, in fact, using ANOVA, it is determined that this regression coefficient estimation bias is caused by the presence of the stochastic trend present in the simulated data. Thus, the results of the methodological development suggest that the stochastic component present in the data should be treated accordingly through a preliminary, exploratory data analysis.
Keywords:ANOVA  DRAG  Experimental design  Methodological choice  Monte Carlo simulation  Quantitative model comparison  Road accident models  Unobserved components model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号