首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation of the conditional distribution function in a semiparametric censorship model
Authors:Maria Carmen Iglesias-Pé  rez,Jacobo de Uñ  a-Á  lvarez
Affiliation:1. Departamento de Estadística e Investigación Operativa, Universidad de Vigo. Escuela Universitaria de Ingeniería Técnica Forestal, Campus de Pontevedra, 36005 Pontevedra, Spain;2. Departamento de Estadística e Investigación Operativa, Universidad de Vigo. Facultad de Ciencias Económicas y Empresariales, Campus Universitario Lagoas-Marcosende, 36310 Vigo (Pontevedra), Spain
Abstract:In this paper we propose a new nonparametric estimator of the conditional distribution function under a semiparametric censorship model. We establish an asymptotic representation of the estimator as a sum of iid random variables, balanced by some kernel weights. This representation is used for obtaining large sample results such as the rate of uniform convergence of the estimator, or its limit distributional law. We prove that the new estimator outperforms the conditional Kaplan–Meier estimator for censored data, in the sense that it exhibits lower asymptotic variance. Illustration through real data analysis is provided.
Keywords:62G05   62G20   62N01
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号