首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
我国上市公司财务困境预测新探
作者姓名:
田满文
作者单位:
江西财经大学金融学院
摘 要:
本文采用主成分分析方法确定模型变量,建立多元判别分析(MDA)、Logistic回归和改进型BP神经网络模型进行财务困境预测。结果表明,神经网络模型的预测准确率明显优于多元判别分析和Logistic回归模型,而后两者的判别效果接近,神经网络模型更适合于财务困境预测。但三种模型的长期预警能力不够理想,提出建立以定量模型为主、定性分析为辅的上市公司财务困境预测新方法。
关 键 词:
财务困境预测
多元判别分析
上市公司
主成分分析方法
中国
定量模型
回归模型
文采
新探
变量
本文献已被
CNKI
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号