首页 | 本学科首页   官方微博 | 高级检索  
     


The Cox Proportional Hazards Model with a Partly Linear Relative Risk Function
Authors:Glenn Heller
Affiliation:(1) Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
Abstract:
The conventional Cox proportional hazards regression model contains a loglinear relative risk function, linking the covariate information to the hazard ratio with a finite number of parameters. A generalization, termed the partly linear Cox model, allows for both finite dimensional parameters and an infinite dimensional parameter in the relative risk function, providing a more robust specification of the relative risk function. In this work, a likelihood based inference procedure is developed for the finite dimensional parameters of the partly linear Cox model. To alleviate the problems associated with a likelihood approach in the presence of an infinite dimensional parameter, the relative risk is reparameterized such that the finite dimensional parameters of interest are orthogonal to the infinite dimensional parameter. Inference on the finite dimensional parameters is accomplished through maximization of the profile partial likelihood, profiling out the infinite dimensional nuisance parameter using a kernel function. The asymptotic distribution theory for the maximum profile partial likelihood estimate is established. It is determined that this estimate is asymptotically efficient; the orthogonal reparameterization enables employment of profile likelihood inference procedures without adjustment for estimation of the nuisance parameter. An example from a retrospective analysis in cancer demonstrates the methodology.
Keywords:kernel estimation  least favorable p-surface  orthogonal reparameterization  profile partial likelihood  semiparametric survival analysis
本文献已被 SpringerLink 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号