Abstract: | Let X = (X1, - Xp)prime; ˜ Np (μ, Σ) where μ= (μ1, -, μp)' and Σ= diag (Σ21, -, Σ2p) are both unknown and p3. Let (ni - 2) wi/Σ2i! X2ni, independent. of wi (I ≠ j = 1, -, p). Assume that (w1, -, wp) and X are independent. Define W = diag (w1, -, wp) and ¶ X ¶2w= X'W-1Q-1W-1X where Q = diag (q1, -,n qp), qi > 0, i = 1, -, p. In this paper, the minimax estimator of Berger & Bock (1976), given by δ (X, W) = [Ip - r(X, W) ¶ X ¶-2w Q-1W-1] X, is shown to be minimax relative to the convex loss (δ - μ)'[αQ + (1 - α) Σ-1] δ - μ)/C, where C =α tr (Σ) + (1 - α)p and 0 α 1, under certain conditions on r(X, W). This generalizes the above mentioned result of Berger & Bock. |