Abstract: | ![]() A statistical model is said to be an order‐restricted statistical model when its parameter takes its values in a closed convex cone C of the Euclidean space. In recent years, order‐restricted likelihood ratio tests and maximum likelihood estimators have been criticized on the grounds that they may violate a cone order monotonicity (COM) property, and hence reverse the cone order induced by C. The authors argue here that these reversals occur only in the case that C is an obtuse cone, and that in this case COM is an inappropriate requirement for likelihood‐based estimates and tests. They conclude that these procedures thus remain perfectly reasonable procedures for order‐restricted inference. |