首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian weighted inference from surveys
Authors:David Gunawan  Anastasios Panagiotelis  William Griffiths  Duangkamon Chotikapanich
Abstract:Data from large surveys are often supplemented with sampling weights that are designed to reflect unequal probabilities of response and selection inherent in complex survey sampling methods. We propose two methods for Bayesian estimation of parametric models in a setting where the survey data and the weights are available, but where information on how the weights were constructed is unavailable. The first approach is to simply replace the likelihood with the pseudo likelihood in the formulation of Bayes theorem. This is proven to lead to a consistent estimator but also leads to credible intervals that suffer from systematic undercoverage. Our second approach involves using the weights to generate a representative sample which is integrated into a Markov chain Monte Carlo (MCMC) or other simulation algorithms designed to estimate the parameters of the model. In the extensive simulation studies, the latter methodology is shown to achieve performance comparable to the standard frequentist solution of pseudo maximum likelihood, with the added advantage of being applicable to models that require inference via MCMC. The methodology is demonstrated further by fitting a mixture of gamma densities to a sample of Australian household income.
Keywords:gamma mixture  latent representative sample  Markov chain Monte Carlo  pseudo maximum likelihood  sampling weights
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号